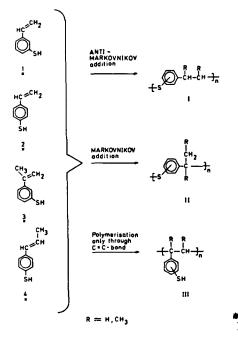
# © Springer-Verlag 1981

## New Sulfur-containing Polymers 4\*. The Structure of Some New Polysulfides

#### **Oskar Nuyken and Manfred Hofinger**


Lehrstuhl für Makromolekulare Stoffe der TU München, Lichtenbergstraße 4, 8046 Garching, Federal Republic of Germany

Summary From <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>13</sup>C -  $\{^{1}H\}$  off resonance experiments it was shown, that the main structural units are formed by an Anti-Markovnikov addition of the SH group to the C,C double bond. Introduction Polymers with the repeating unit

have been described recently (NUYKEN et al. 1980, 1981).

These polymers are synthesized from monomers with two functional groups per molecule (C=C and SH) such as 1 to 4. The generalised polymers which are theo. retically possible from these monomers are shown. In addition to the single structures I, II, and III it is also possible that the polymer contains a mixture of these structures. To determine part 3, reference 3

0170-0839/81/0004/0343/\$01.60



+s<sup>A2</sup>

the precise structure of the polymers we have made a detailed analysis of their  $^{13}C$  and  $^{1}H$  NMR spectra.

# Results Polymer\_from 1:

Table 1: Expected signals for the different polymer structures possible from monomer <u>1</u>

| structure                                    | ts - CH3-CH2Ju                         | € <sup>cH3</sup><br>€s | {сн-сн₂}л<br>О_ <sub>SH</sub> |
|----------------------------------------------|----------------------------------------|------------------------|-------------------------------|
| <sup>1</sup> H NMR                           | CH <sub>2</sub> t<br>CH <sub>2</sub> t | CH3 d<br>CH q          | CH <sub>2</sub> d<br>CH t     |
| <sup>13</sup> C NMR                          | -CH2CH2-                               | -сн3 -сн-              | -снсн_                        |
| <sup>13</sup> C —{ <sup>5</sup> H off reson. | t t                                    | q d                    | t d                           |

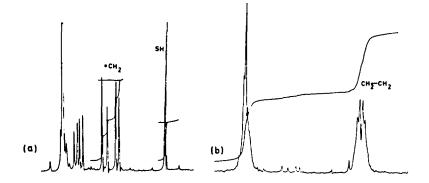



Fig. 1a: <sup>1</sup>H NMR of  $\underline{1}$  (a) and of the polymer from  $\underline{1}$  (b) (solvent: CDCl<sub>3</sub>)

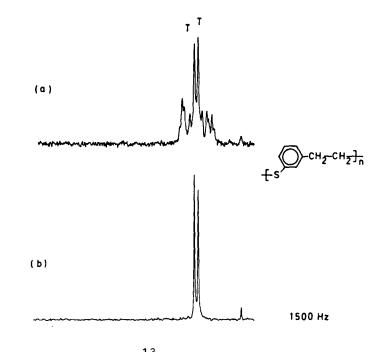



Fig. 1b: 22.53 MHz  ${}^{13}$ C NMR spectrum of <u>1</u> (solvent: CDCl<sub>3</sub>) using

a) off resonance proton decoupling

b) proton noise decoupling

Polymer from 2:

The only difference between 1 and 2 is the position of the SH group on the aromatic ring, therefore one would expect similar structures as shown in table 1.

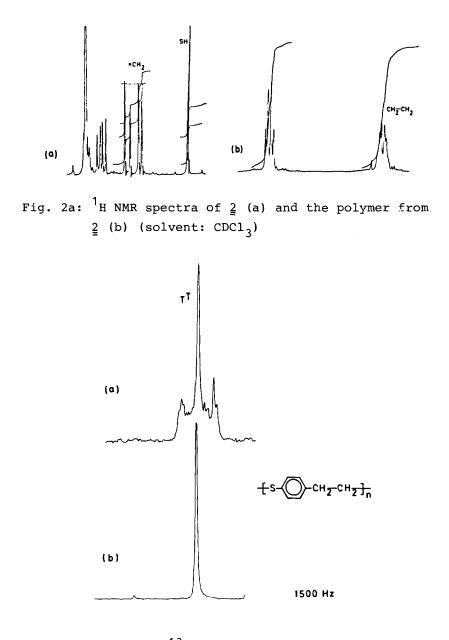



Fig. 2b: 22,53 MHz <sup>13</sup>C NMR spectrum of 2 (solvent:CDCL<sub>3</sub>) using

- a) off resonance proton decoupling
- b) proton noise decoupling

## Polymer\_from\_3:

Table 2: Expected NMR signals for the different polymer structures possible from monomer  $\underline{3}$ 

| structure                     | fs                                    | fs ⊂ cH3<br>cH3<br>cH3                          | сн <sub>3</sub><br>{c-сн <sub>2</sub> } <sub>n</sub><br>О_ <sub>SH</sub> |
|-------------------------------|---------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------|
| <sup>1</sup> H NMR            | CH3 d<br>CH m<br>CH2 d                | CH3 S<br>twice that of<br>the monomer<br>signal | CHg s<br>CHg s<br>CHg s                                                  |
| 13C NMR                       | -сн <sub>3</sub> -снсн <sub>2</sub> - | -сн, -с-                                        | -сн3 -¢сн2-                                                              |
| $^{13}C = {}^{1}H$ off reson. | q d t                                 | q s                                             | q s t                                                                    |

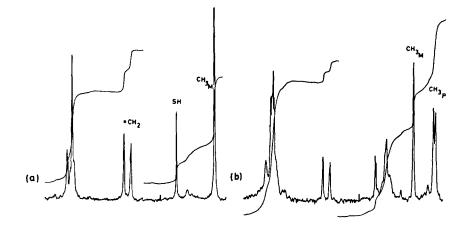
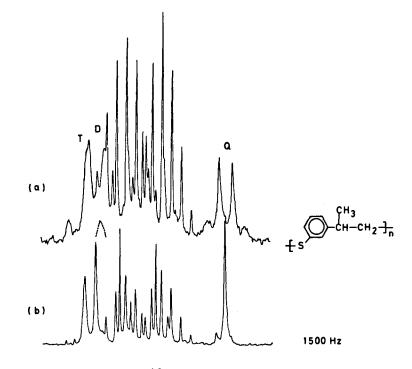




Fig. 3a: <sup>1</sup>H NMR of  $\underline{3}$  (a) and of  $\underline{3}$ , after  $\sim$  50 % conversion (b) (solvent: CDCl<sub>3</sub>)



- Fig. 3b: 22,53 MHz  ${}^{13}$ C NMR spectrum of 3 (solvent: DMF d7) using
  - a) off resonance proton decoupling
  - b) proton noise decoupling

Polymer from 4:

Table 3: Expected NMR signals for the different polymer structures possible from monomer  $\underline{4}$ 

| structure                                    | Снэ<br>{s-@-сн2-сн3 <sub>n</sub>      | ts-⊙-cH <sub>n</sub><br>ts-, tcH-cH <sub>n</sub><br>tcH-cH <sub>n</sub><br>sH |
|----------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------|
| <sup>1</sup> H NMR                           | CH3 d<br>CH2 d<br>CH m                | CH <sub>3</sub> t CH <sub>3</sub> d<br>CH <sub>2</sub> m CH m<br>CH t CH d    |
| <sup>13</sup> C NMR                          | -сн <sub>3</sub> -сн <sub>2</sub> сн- | -сн» -сн» - сн» - сн» - сн                                                    |
| <sup>13</sup> C -{ <sup>1</sup> H ] off res. | q t d                                 | q t d q d d                                                                   |

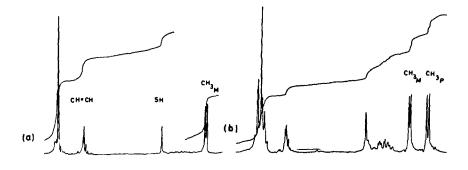
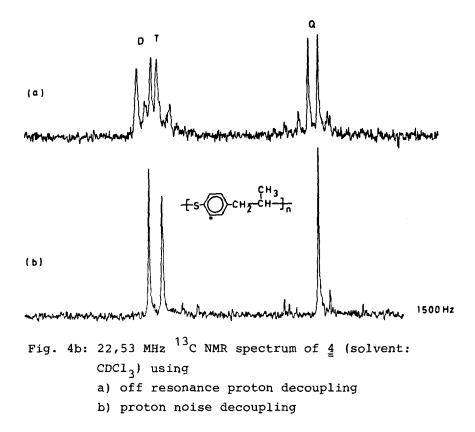




Fig. 4a: <sup>1</sup>H NMR of  $\frac{4}{2}$  (a) and of  $\frac{4}{2}$ , after  $\sim$  50 % conversion (b) (solvent: CDCl<sub>3</sub>)



## Conclusion

Although the <sup>1</sup>H NMR of the polymers from <u>1</u> and <u>2</u>, only suggests a  $-CH_2-CH_2$ - unit (the symmetrical pattern around **ð** (ppm) : 3,0) the <sup>13</sup>C - {<sup>1</sup>H} off resonance spectra (Fig. 1b and Fig. 2b) conclusively prove that only the Anti-Markovnikov addition product (I) is present in these polymers.

In the case of the polymer formed from  $\frac{3}{2}$  the <sup>1</sup>H NMR (Fig. 3a) clearly shows that Anti-Markovnikov product is the only detectable structure and the two experiments using <sup>13</sup>C NMR further corroborate this interpretation: the proton broad band decoupled spectrum shows only CH<sub>3</sub>, CH<sub>2</sub> and CH carbon atoms and the <sup>13</sup>C- $\{^{1}\text{H}\}$  off resonance spectrum shows very clearly a single quartet (CH<sub>3</sub>), a single triplet (CH<sub>2</sub>) and a single doublet ( CH ).

For the polymer from  $\underline{4}$  structure II can be excluded because of the <sup>1</sup>H NMR. In order to distinguish between I and III one can take either an IR spectrum, which shows no SH absorption or the <sup>13</sup>C-  $\{^{1}H\}$  off resonance experiment, from both only structure I is possible. Thus it has been conclusively shown that for all four monomers the polymerization occurs exclusively via Anti-Markovnikov addition of the SH to the C=C group.

### References:

 NUYKEN, O., HOFINGER, M., KERBER, R., Polymer Bull. <u>2</u>, 21 (1980)
NUYKEN. O., HOFINGER, M., Polymer Bull. <u>4</u>, 75 (1981)
NUYKEN. O., HOFINGER, M., Polymer Bull. <u>4</u>, 335 (1981)

We wish to thank the Max-Buchner-Forschungsstiftung for a scholarship (program: 1145)

Received and accepted February 19, 1981